Arsenic Removal from Water using Iron Oxide Ceramic

Membranes

Megan Aary Nelson Vining Contributions by Colin Arnold

May 1, 2007

Problem

- Norman pays Oklahoma City \$3.10/1000 gallons for drinking water
- Previously from Lake Thunderbird and Norman wells (Well flow rates of 1500 m³/day)
- Arsenic (As) concentrations range from 1 to 42 parts per billion (ppb)
- Lung, skin, urinary, bladder, and kidney cancers caused by As poisoning

- Reduce concentrations to World Health Organization (WHO) standards of
 - 10 ppb
- Evaluate iron oxide ceramic membranes to remove this arsenic
- Design treatment system using membranes

Background

 Arsenate and arsenite are common forms of arsenic found in water

 Research at UT-EI Paso found that these two forms adsorbed to iron oxide coated stones

Background

 Under Dr. Maria Fidalgo de Cortalezzi, current research is being performed on iron oxide membranes at El Instituto Tecnólogico de Buenos Aires

Saturation Limit:	0.00011	kg As/kg Fe ₂ O ₃
Porosity:	0.4	
Fe ₂ O ₃ on pilot membrane:	0.002	kg
Membrane thickness, I _m :	50	μm
Pore diameter:	24	nm
Flux:	9.02 x 10 ⁻⁵	m ³ /m ² s
BET Surface Area:	120	m²/g

Background

- Pressure difference across membrane drives contaminated water across membrane
- Arsenic adsorbs to iron oxide membrane

SEM image of top the top surface of an iron oxide membrane

From Cortalezzi, et al.

- Must treat 8 contaminated wells with an iron oxide membrane system
 - Membrane Design Limitations:
 - Size (Brittleness, transporting...)
 - Porosity
 - Thickness
 - Saturation time

Design Proposals

Municipal Treatment System

- 1. Large membrane to place inside 33" pipe
 - -Too brittle
 - -Cannot transport
 - -High production costs
- 2. Small membranes to make up 33" pipe
 - Sturdy
 - Low production costs

At-Home Treatment System

- 3. Membrane size of faucet
 - High consumer costs

Scale Up Membrane Row 1 Row 2 Row 3 Row 4 **D**= Total Diameter

D= Total diameter of support (inches) D_{membrane} + Clearance= 3 inches n=number of membranes

Looking at 1 quadrant of support:

Row 1: n=D/(2*(D_{membrane}+Clearance))

Row 2: n=(D/6)-1

Row 3: n=(D/6)-2

Row 4: n=(D/6)-3=(D/6)-((D/6)-1)

Continue for any diameter and multiply by four for number of quadrants:

$$n = 4 * \sum_{x=0}^{\frac{D}{6}-1} \left(\frac{D}{6} - x\right)$$

Chosen Design

Pressure Drop Across Membrane

Modified Ergun Equation, derived from Darcy's Law for dead-end filtration, laminar flow of spherical particles (arsenic) in solution (water) into a porous membrane

$$\rho Q_{well} = \frac{\rho \varepsilon^{3} (P_{in} - P_{out})}{(150/36)(1 - \varepsilon)^{2} a_{v}^{2} \mu l_{M}}$$

Bernoulli Equation for work of the pump

$$\frac{\Delta P}{\rho} + \frac{\Delta(v^2)}{2} + g\Delta z = \frac{W}{\rho Q_{well}} \Longrightarrow W = Q_{well}\Delta P$$

Required Pump Work

 $W = Q_{well} \Delta P = \frac{Q_{well}^2 ((150/36)(1-\varepsilon)^2 a_v^2 \mu l_M)}{\varepsilon^3}$

Where Q_{well} = volumetric flow rate of water

 ϵ = porosity

D_{pore}= pore diameter

n= number of pores

 a_v = specific surface area of membrane

 μ = fluid viscosity

 I_{M} = membrane thickness

150/36= 2*tortuosity

Municipal System

Pump Work Comparison

$$\rho Q_{well} = \frac{\rho \varepsilon^3 (P_{in} - P_{out})}{(150/36)(1 - \varepsilon)^2 a_v^2 \mu l_M} \Longrightarrow P_{in} = Q_{well} \alpha + P_{out}$$

Full Flow

 $P_{in} = Q_{well}\alpha + P_{out}$ $\Delta P = P_{in} - P_{out} = Q_{well}\alpha$ $W_{pump} = Q_{well}(P_{in} - P_{well})$ $= Q_{well}(Q_{well}\alpha + P_{out} - P_{well})$ $P_{out} = P_{well}$ $W_{pump} = Q_{well}(Q_{well}\alpha)$

$$W_{pump} = Q_{well}^2 \alpha$$

Split Flow $P_{in}^{*} = (Q_{well}/2)\alpha + P_{out}^{*}$ $\Delta P_{e}^{*} = P_{in}^{*} - P_{out}^{*} = (Q_{well}/2)\alpha$ $W_{pump}^{*} = Q_{well}(P_{in}^{*} - P_{well}^{*})$ $= Q_{well}[(Q_{well}/2)\alpha + P_{out}^{*} - P_{well}^{*}]$ $P_{out}^{*} = P_{well}^{*}$ $W_{pump}^{*} = Q_{well}[(Q_{well}/2)\alpha]$

$$W_{pump}^* = Q_{well}^2 \alpha/2$$

Work to Remove Water from Well and Pump to Holding Tanks

- •Each well supplies water at 1500 m³/day
- Assume this same flow rate to holding tanks approximately
 10 miles away
- •Bernoulli Equation with frictional losses through 33" pipe

$$\frac{\Delta P}{\rho} + \frac{\Delta(v^2)}{2} + g\Delta z + \sum F = W$$

Turbulent Flow

$$f = \frac{0.079}{\text{Re}^{0.25}}$$
 $F = \frac{2fV^2L}{D}$

Time of Saturation

 $(0.00011kgAs/kgFe_2O_3) * x_{kg,ironoxide}$

As flow

t_{saturation}

Regeneration with Basic Wash

1st flush: $t_{saturation} = t_{saturation} + 0.5t_{saturation}$ 2nd flush: $t_{saturation} = t_{saturation} + 0.5t_{saturation} + 0.25t_{saturation}$ 3rd flush: $t_{saturation} = t_{saturation} + 0.5t_{saturation} + 0.25t_{saturation} + 0.125t_{saturation}$

Scale Up

Pump Work and Saturation Time

•Chose to vary following parameters:

- Support diameter
- Arsenic concentration
- •Flow rate from well

•With more research, in the future, can vary:

- Pore diameter
- Membrane thickness
- •Membrane diameter
- Porosity

Pump Work and Saturation Time

		0				 		I	0	12
	D _{as}			Q _{well}		٤			As _c	oncentration
2	1.15E-10	(m)		0.0174	(m ³ /s)	0.4	porosity		32	(ppb)
}	0.12	(nm)		1.45E+08	gal/year	SApores			0.032	(mg/L)
ŀ	D _{pore}			Flux		240	(m ²)		0.000032	(kg/m ³)
5	24	(nm)		0.016	(m ³ /m ² s)	R _{membrane}				As _{flow}
ò	2.40E-08	(m)		A _{cs single pore}		0.035786997			5.556E-07	(kg/s)
r	l _m			4.52E-16	(m ²)	Amembrane			17.52	(kg/yr)
}	50	(µm)		A _{cs every pore}	flow/flux	1.062195148	(m ²)		Satu	ration Limit
)	5.00E-05	(m)		1.06E+00	(m²)	SA _{membrane}			0.11	(mg As/g Fe ₂ O ₃)
0				n		8.85E+03			0.00011	(kg As/kg Fe ₂ O ₃)
1	Denisty H ₂ O			2.35E+15	(# of pores)	V _{membrane}			Fe ₂	O₃/m² SA
2	1000	(kg/m ³)		Q _{single pore}		5.31E-05	(m ³)		1.24	(kg/m²)
3	Denisty Fe ₂ O ₃			7.394E-18	(m ³ /s)				Fe ₂	O₃ needed
4	5.26	(g/cm ³)		N _{pore}		Ergun Parar	meters		78738.1	(kg)
5	5260	(kg/m ³)		7.394E-15	(kg/s)	a				
6	Viscosity			Vpore		4.52E+06	(m ²)			
7	0.001	(Pa-s)		1.634E-02	(m/s)	av				
8	Fe ₂ O ₃ on Membran	e				7.53E+06	(m²)			
9	2	(g)				Re				
0	0.002	(kg)				3.923E-04				
1						 				
2	Support diameter			ΔF)	 Wpump			t	saturation
3	66.0	(in) (m)		1154063.95	(Pa) (Pa)	 20035.82	(VV)		15590149	(S) (min)
4	1.68	(m)		1154.06	(кРа)	20.04	(KW)		259836	(min)
5									4331	(nr)
6	# of membranes	s within :	support						180	(days)
(26	94								
8										

Production of Membrane

Membrane Synthesis

- Equipment required
 - 1 carbon steel batch reactor (size based on capacity)
 - Centrifuge to remove unreacted lepidocrocite
 - Glass for membrane drying
 - Batch Oven

Production Time

Plant Capacity

Plant Capacity: Produce 3800+10 membranes per year

Membranes per Steel Support

Raw Materials

	Raw Materials									
Produces										
FeCl ₂	1.19286 g		59643	0.000374 \$/g	22.3	\$22.31				
NaOH	0.01 mol	4E-07 ton	0.02	165 \$/ton	3.3	\$3.30				
Acetic Acid	1.35688 mL	0.003138 lb	157	0.25 \$/lb	19.6	\$19.61				
Water	0.1 L	0.1 kg	5000	0.00055 \$/kg	2.8	\$2.75				
	Batch of membranes \$47.97									

Equipment

Batch Oven Specifications

- -Reach temperature of 400°C
- -Hold two glass shelves with area of total membranes on support
- -Electrically heated
- -Blower to circulate air
- -Ventilation to remove evaporating water

Equipment Costs

Membrane Equipment Costs									
Batch Reactor	Carbon Steel	0.000 m³/s	0.05 m³	\$1,200					
Centrifuge				\$5,500					
*Remove unreacted	lepidocrocite by centrifuging	g for 30 minutes							
Glass		Total diameter of membranes:	<i>0.91</i> m						
		Area of glass:	0.66 m ²						
			7.07 ft ²						
			15.75 \$/ft ²						
			2 levels of glass	\$223					
Furnace & Blower									
	Inside dimensions	Recirculated Air Volume	Output						
	WxLxH	1600 ft ³ /min	500000 Btu/hr						
	3'x3'x4'	45.3 m ³ /min	147 kW						
	-			\$7,000					
			TOTAL:	\$13,923					

Fixed Capital Investment

Fixed Capital Investme	ent	
Direct	2007 Costs (\$)	
	Purchased equipment	\$13,811
	Installation	\$2,762
	Piping	\$552
	Total direct plant cost	\$17,126
Indired	ct Costs	
	Engineering & supervision	\$11,049
	Legal expenses	\$3,729
	Contingency	\$2,072
	Total indirect plant cost	\$16,850
Fixed Capital Investme	ent	\$33,976

Working Capital

Working Capital	\$47,425
Steel Support (36 inches)	\$1,325
Additional 33" Pipe (\$225/meter)	\$2,250
Increased Piping at Well (\$300meter)	\$2,400
Pipe Preparation	\$1,250
Flanged Valve	\$5,000
Raw Materials	\$7,100
Labor & Installation	\$13,000
Engineer	\$7,500
Installation Equipment Rental	\$4,500
Taxes	\$3,100

Production Costs

	Total Product Cost	- Large Scale N	Membrane Produ	ction
				2007 Costs (\$)
Operating	Labor			
1	Plant Capacity		30 (hr/day)	
			21 (\$/hr)	\$195,458
Operating	Supervision			\$78,183
Raw Mater	rials			
	Water			\$828
	NaOH			\$993
	FeCl ₂			\$6,714
	Acetic Acid			\$5,903
	Total Raw Materials			\$14,439
Electricity		0.05 (\$/kW)	90925 (kW)	\$4,092
Maintenan	ce & Repairs			\$2,039
Operating	Supplies			\$306
	Total Variable Produ	uction Costs		\$294,515
Royalties	(membrane patent)			\$2,166
Taxes				\$4,077
Insurance				\$3,398
Rent				\$30,000
	Fixed Charges			\$39,640
			Total:	\$334,156

Vary Support Diameters

	36"-84 Membranes/support									
Well #	Asconc (ppb)	Replacements/yr	Membrane \$/yr	Elec \$/yr from ground + to holding tanks	Consumer Total Cost/yr	\$/1000 gallons treated				
4	29	8	\$72,839	\$33,029	\$105,868	\$0.73				
6	16	4	\$36,420	\$33,029	\$69,449	\$0.48				
7	24	6	\$54,629	\$33,029	\$87,659	\$0.61				
15	41	14	\$127,468	\$33,029	\$160,498	\$1.11				
18	13	2	\$18,210	\$33,029	\$51,239	\$0.35				
31	42	14	\$127,468	\$33,029	\$160,498	\$1.11				
32	31	10	\$91,049	\$33,029	\$124,078	\$0.86				
36	12	2	\$18,210	\$33,029	\$51,239	\$0.35				
	Total:	60	\$546,293	\$264,235	\$810,528	\$0.70				
	Total Membranes:	3000				Average				

	42"-112 Membranes/support									
Well #	Asconc (ppb)	Replacements/yr	Membrane \$/yr	Elec \$/yr from ground + to holding tanks	Consumer Total Cost/yr	\$/1000 gallons treated				
4	29	6	\$94,721	\$23,548	\$118,269	\$0.82				
6	16	2	\$31,574	\$23,548	\$55,122	\$0.38				
7	24	6	\$94,721	\$23,548	\$118,269	\$0.82				
15	41	10	\$157,868	\$23,548	\$181,416	\$1.25				
18	13	2	\$31,574	\$23,548	\$55,122	\$0.38				
31	42	10	\$157,868	\$23,548	\$181,416	\$1.25				
32	31	8	\$126,294	\$23,548	\$149,843	\$1.04				
36	12	2	\$31,574	\$23,548	\$55,122	\$0.38				
	Total:	46	\$726,191	\$188,388	\$914,579	\$0.79				
	Total Membranes:	2300				Average				

Cost Analysis

Norman Savings

	36"-84 Membranes/support									
Well #	Asconc (ppb)	Replacements/yr	Membrane \$/yr	Elec \$/yr from ground + to holding tanks	Consumer Total Cost/yr	\$/1000 gallons treated				
4	29	8	\$72,839	\$33,029	\$105,868	\$0.73				
6	16	4	\$36,420	\$33,029	\$69,449	\$0.48				
7	24	6	\$54,629	\$33,029	\$87,659	\$0.61				
15	41	14	\$127,468	\$33,029	\$160,498	\$1.11				
18	13	2	\$18,210	\$33,029	\$51,239	\$0.35				
31	42	14	\$127,468	\$33,029	\$160,498	\$1.11				
32	31	10	\$91,049	\$33,029	\$124,078	\$0.86				
36	12	2	\$18,210	\$33,029	\$51,239	\$0.25				
	Total:	60	\$546,293	\$264,235	\$810,528	\$0.70				
	Total Membranes:	3000	X			Average				

Consumer Total Cost/yr includes:

•Membrane \$/yr found from dividing production costs per year by membranes produced in year plus a 15% mark-up

•Total electricity costs to pump water from well to holding tank

Save \$2.40/1000 galllons

of water treated

Save \$2.5 million per year!!!

At Home System

Average household water consumption (drinking water only): 7 gallons per day

Diameter of membrane: 1 inch (Size of faucet head)

3	I _m (μm)	W _{pump} (kW)	Energy \$ of pump/yr	t _{saturation} (day)	TCI	Membrane cost	Total product cost/year	Unit Price	Sales	Revenue
0.4	100	332	17	41	\$198,297	2.04	\$711,139	2.15	\$746,696	\$35,557
0.5	100	170	9	41	\$198,297	1.99	\$692,685	2.09	\$727,319	\$34,634
0.6	100	99	5	41	\$198,297	1.94	\$674,426	2.04	\$708,148	\$33,721

Treat 1 household per year \$23.18

Average # of households 38,834

Cost to treat for all houses \$900,077

Water treated for all households (gal/yr) 99,220,870

> \$/1000 gallons of treated water \$9.07

Conclusions

•36 inch steel support of membranes proves most economically feasible

•Saves City of Norman \$2.5 million per year

•At home system is not economical

Norman now in compliance with WHO regulations

Recommendations

 Increase Product Markup •Norman only saves \$500,000/yr Consider On-Site Regeneration Services •Expand to Other Cities with Arsenic Problems Research Membrane Mechanics Increase Porosity Increase Thickness Study Mechanical Integrity

Questions?